DOCUMENT SUBMITTED TO: TR-42.7 Single-Pair Thermal Task Group

The document to which this cover statement is attached is submitted to a Formulating Group or sub-element thereof of the Telecommunications Industry Association (TIA) in accordance with the provisions of Sections 3.3.2 Submissions and Contributions inclusive of the TIA Engineering Committee Operating Procedures (ECOP) dated July 7, 2015, all of which provisions are hereby incorporated by reference.

SOURCE:	Darshana Bhatt, Silvassa, India			
CONTACT:	Sterlite Technologies LimitedSurvey No. 33/1/1, Waghdhara Road, Silvassa, Dadra and Nagar Haveli - 396191, India Mobile: +91-918155020817 Landline: +91-9102606613817			
TITLE:	Single Pair Ethernet - PoE Testing			
PROJECT NUMBER (PN):	-			
DISTRIBUTION:	TIA TR42 Thermal Performance of 1-pair cables task group			
INTENDED PURPOSE OF DOCUMENT:	FOR INCORPORATION INTO TIA PUBLICATION			
	X FOR INFORMATION			
	OTHER (Please describe)			

ABSTRACT: Temperature Rise in Single Pair Ethernet Cable Bundle with dissimilar supply of current .

PATENT DISCLOSURE [OPTIONAL]

The Source may have patent(s) and/or published pending patent application(s) that may be essential to the practice of all or part of this Contribution as incorporated in a TIA Publication, and the Source is willing to comply with Section 3.2 Intellectual Property Rights (IPR) Policy of the TIA Engineering Committee Operating Procedures (ECOP) dated as to such July 7, 2015 patent(s) and/or published pending patent application(s).

STĽ

Single Pair Ethernet PoE Testing

Construction of the Cable

Single Pair with S/FTP Construction: Diameter of Jacket – 4.9 mm Diameter Of Conductor – 23 AWG Resistance – 0.0610 ohm/m

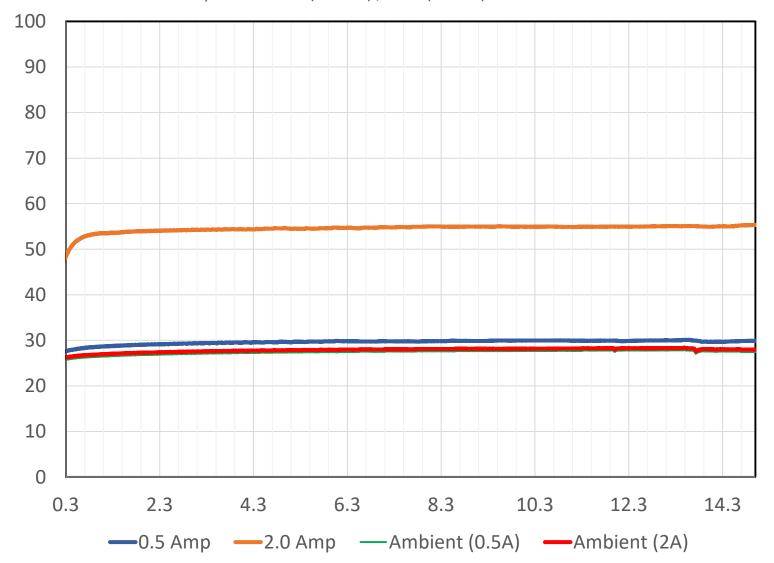
Test Setup

Goal was to see the performance of Single pair Ethernet 23 AWG with 37 and 61 Bundles, then use the data to extrapolate the temperature rise as we increase the number of bundles.

- The Cable bundle was mounted on a rope frame with no conduit.
- Temperature probe was placed inside the cable and on the jacket.
- Temperature difference (ΔT) was measured between the highest temperature rise and the Maximum Ambient Temperature.

Test Setup Pictures

PoE Test Parameter


Bundles	CD (mm)	Resistance (ohm/m)	Current (Amp)	Power (Watt)	ΔT (°C)
37	23 AWG	0.0610	0.5	2.9	2.54
			2	46.2	21.92
61			0.5	6.7	2.59
			2	79.6	31.01

Two cable Bundles 37 and 61 were tested with the current supply of 0.5 Ampere, Later the same Bundle was tested with supply of 2.0 Ampere.

The Temperature Rise in the 37 bundle by supplying 0.5 A and 2.0 A is compared in the Graph upon next slide.

Temperature Rise Comparison – 37 Bundle Size

Temperature Rise (Celsius) /Time (Hours)

Objective is to complete the Table

We will be measuring the Temperature rise in different number of bundles and current supply in it.

Bundles Size/Current Supply (A)	Temperature Rise ΔT (°C)					
	0.5	0.75	1.75	2		
19						
37	2.54			21.92		
61	2.59			31.01		
97						

Conclusion & Future action plan

- 2A Current with 37 Bundle size is well within the cable operating temperature range. But in 61 Bundle size & 2A current gives 59.6 deg C which is on the edge of highest temperature rating.
- We will be conducting more Trials to study the PoE performances with different gauges (18 and 26 AWG) and Bundle Size.
- Model an equation which predicts the Temperature Rise in the different number of bundles. Compare the modelled and actual measured value for validating the model accuracy.